
Unsteady forced convection with sinusoidal duct wall
generation: the conjugate heat transfer problem

James Sucec *

Department of Mechanical Engineering, University of Maine, 5711 Boardman Hall, Room 202, Orono, ME 04469-5711, USA

Received 28 November 2000; received in revised form 23 August 2001

Abstract

Transient heat transfer solutions are found for a fluid flowing within a parallel plate duct when there is sinusoidal

generation with axial position in the duct wall. Solutions are found for wall temperature, surface heat flux and fluid bulk

mean temperature as a function of position and time in this conjugated problem. To develop this solution, finite dif-

ference methods are used as well as the quasi-steady method and another method which employs a two integral rep-

resentation for the surface heat flux. Accuracy limitations of the quasi-steady results are identified. Transient local

Nusselt number predictions show its dependence upon time. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Unsteady state heat transfer conditions occur in duct

fluid and walls of equipment such as nuclear fuel ele-

ment cooling passages, electric resistive heaters and heat

exchangers. Startup and shutdown operations, as well as

changes in steady-state power levels, give rise to the

transient conditions in the duct wall and flowing fluid.

Most of these situations are conjugated problems,

that is, one cannot prescribe either the surface temper-

ature or surface heat flux variation with time and posi-

tion. Hence these quantities, along with the bulk mean

temperature distribution within the fluid, all must be

predicted using the ‘‘conjugation conditions’’, namely,

that the temperature and heat flux must be continuous

at the common boundary of the fluid and the wall.

Previous solutions to unsteady, conjugate laminar

flow duct problems include the finite difference solutions

of Schutte et al. [1], Al-Nimr and Hader [2], Yan et al. [3]

and Lin and Kuo [4], as well as the eigenfunction solu-

tion of Olek [5]. In all of these, the boundary condition

at the outer surface was either a step change in tem-

perature or in heat flux. Finite difference solutions in-

volving convection at the outer boundary were

developed by Yan [6] and Sucec [7]. Travelho and Santos

[8], used Laplace transforms to solve slug flow in the

duct and Guedes et al. [9] applied generalized integral

transforms to turbulent duct flow. Both [8] and [9] are

for a periodic inlet temperature variation with time. In a

very early work, Siegel [10], used a slug flow velocity

profile and numerical integration along characteristic

curves to solve some cases involving wall generation. A

recent example of the quasi-steady approach is the work

of Romie [11]. Accuracy of quasi-steady predictions is

often limited by the wall–fluid thermal capacity ratio

and the ‘‘speed’’ of the transient.

In the present work, space and time dependent gen-

eration rates per unit volume, q000, within the wall ma-

terial are considered. For the most part, we will deal

with, primarily, the first time domain, that is, where time

t < x=umax. This is the time it takes the fastest moving

fluid to travel from the duct entrance to the position, x,

of interest. This time period is the initial stage of the

transient and is often the time when the most rapid

changes with time occur. The primary solution method

will be the finite difference solution of the partial dif-

ferential energy equations for the flowing fluid and the

duct wall material. This baseline finite difference solu-

tion will be compared to results which use the quasi-

steady method, and, also, to a two integral, approximate

surface heat flux expression, developed in [12]. The

generation rates, within the wall material, used in the
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present work are both sinusoidal in the axial coordinate,

x, with one of them also being an exponential function

of time, t. The sinusoidal variation in x is an important

one in nuclear fuel plates, [10]. [13], argues for a sinu-

soidal variation with x to model a periodic array of

heating elements within a wall. In an earlier work, Sucec

and Weng [14], use a simpler generation rate, q000, which
allowed an analytical solution when using the approxi-

mate flux model.

2. Analysis

The physical situation is a parallel plate duct of

wall thickness b and distance R to the duct midplane.

A constant property fluid flows within the duct with a

steady fully developed, laminar velocity profile. The

Peclet number is high enough so that axial conduction

is negligible as is viscous dissipation. The temperature

profile is, in general, undeveloped and the Biot num-

ber is low enough to neglect transverse temperature

gradients within the wall. At time t ¼ 0, the fluid and

the wall material are at the constant temperature Ti,
when, suddenly, the internal generation rate within the

wall, q000, becomes active and is a function of both

axial coordinate, x, and time, t, in general. We want

the solution to yield the local wall temperature, sur-

face heat flux and fluid bulk mean temperature as a

function of axial position and time t. These will allow

the calculation of the local Nusselt number if it is

desired. Both the approximate solution which uses the

two integral flux model and the quasi-steady solution

are, strictly speaking, valid only in the first time do-

main, t < x=umax. The finite difference solution has no

Nomenclature

a0; a1 coefficients in velocity profile, Eq. (22)

A2 coefficient given in Appendix A

b duct wall thickness

b0; b1; b2;
b3; b6 coefficients given in Appendix A

B qwcpwb=qfcpfR, ratio of thermal capacity

of the wall to the fluid

cpf ; cpw specific heat capacity of fluid and of wall

CR coefficient in generation expression,

Eq. (6)

CS ;CC, coefficients given in Appendix A

D defined by Eq. (7)

f q000=qg
F af t=R2 nondimensional time

Fa; Fb defined in Eq. (28)

gS ; gCA; gCB coefficients defined by Eqs. (18)–(20)

GC;GS coefficients given in Appendix A

h surface coefficient of heat transfer at

inside duct wall

i index

j index

J defined in Eq. (17)

k index

kf ; kw thermal conductivity of fluid and wall,

respectively

K defined by Eqs. (6) and (7)

M defined by Eq. (30)

n index

Nu hR=kf , Nusselt number

p Laplace transform parameter

qw heat flux at inside wall

qg reference generation rate per unit

volume (W= m
3
)

q000 energy generation rate per unit

volume (W=m
3
)

Q qw=qgb nondimensional inside

surface heat flux

R half height of duct

Rk defined in Eq. (28)

Rn Rk at k ¼ n
Sk defined in Eq. (29); Sn ¼ Sk at k ¼ n
t time

T ; Ti; TB; TW local, initial, bulk mean and wall

temperatures

um; umax mass average and maximum velocity

W defined in Eq. (13)

x space coordinate along the wall

X afx=R2um nondimensional x

coordinate

y space coordinate perpendicular to duct

wall

Y y=R nondimensional y coordinate

Greek symbols

af thermal diffusivity of fluid

Df afDt=R2

Df ;DX finite difference increments in F and X

qf ; qw mass density of fluid and of wall

r dummy variable for F

s F � X
/ kfðT � TiÞ=qgbR nondimensional local

temperature

/B;/W bulk mean fluid and wall value of /

Subscripts

B bulk mean fluid value

qs quasi-steady value

w duct wall value
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such limitation and also is not limited to the thermal

entrance region.

The generation rate, q000, is rewritten as q000 ¼ qgf x; tð Þ
where both q000 and qg have the same units, W=m3

. Using

this in an energy balance on the duct wall, b by dx, gives

the following differential equation where qwðx; tÞ is the

local surface heat flux, W=m2
:

qwcpwb
oTw
ot

þ qw x; tð Þ ¼ qgf x; tð Þ: ð1Þ

Eq. (1) is the basic wall energy balance to be used in all

three of our approaches to a solution. Used through-

out the paper are non-dimensional quantities defined

by F ¼ af t=R2, Y ¼ y=R, X ¼ afx=R2um, Q ¼ qw=qgb,
/w ¼ kfðTw � TiÞ=qgbR, /B ¼ kfðTB � TiÞ=qgbR and B ¼
qwcpwb=qfcpfR.

2.1. Finite difference analysis

An energy balance on the flowing fluid gives the

following partial differential equation for the fluid tem-

perature, /ðX ; F Þ:
o/
oF

þ 3 Y
�

� :5Y 2
� o/
oX

¼ o2/
oY 2

: ð2Þ

The initial condition and boundary conditions are as

follows:

F ¼ 0; X > 0; 06 Y 6 1; / ¼ 0;

X ¼ 0; F > 0; 0 < Y 6 1; / ¼ 0;

Y ¼ 1; F > 0; X > 0; o/=oY ¼ 0:

ð3Þ

Closure of the mathematical problem statement is

achieved by using the wall energy balance, Eq. (1), and

combining it with the two conjugation conditions at

Y ¼ 0, namely equal surface temperatures and equal

heat fluxes in both the fluid and the solid wall, which

yields the following condition:

Y ¼ 0; X > 0;

F > 0� o/
oY

� �
þ B o/

oF
¼ q000

qg
¼ f X ; Fð Þ:

ð4Þ

Using X ¼ iDX , Y ¼ ðj� 1ÞDY and F ¼ nDf , the

following implicit finite difference equation is used to

simulate Eq. (4), at Y ¼ 0, or j ¼ 1:

1

�
þ Df
BDY

�
/nþ1
i;1 � Df

BDY
/nþ1
i;2 ¼ /ni;1 þ

Df
B
f X ; Fð Þ: ð5Þ

The finite difference equations for the interior fluid

nodes, j ¼ 2 to N, are given in [7] as Eqs. (8) and (9).

Discussion of the study of compatibility, truncation

error and stability of these implicit finite difference

equations is available in [7]. In the present work, lattice

refinement studies led to the lattice spacings,

DX ;DY ;Df , needed to insure that the solution is sensibly

independent of these lattice spacings. These spacing si-

zes, in general, depend upon the case being considered

and on the values of dimensionless time, F, and axial

position, X. For a typical set of conditions, for example,

when q000 ¼ qg eDF � 1½ � sin pKX , D ¼ 4:0, K ¼ 1:0 and

B ¼ 1:0, lattice refinement led to the choice of 193 nodes

across the duct half width in the Y direction,

DX ¼ :003125 and Df ¼ :00015625. Using these spac-

ings, the maximum change in /w; /B, and Q is less than

0.22% if the lattice is refined further.

2.2. Generation rate forms

The finite difference equations described above

were solved using the following two functions for

the dimensionless generation rate, f ðX ; F Þ, where

q000=qg ¼ f ðX ; F Þ. The first of these is independent of

time, F, and therefore is a model for a steady-state

generation function, while the second has exponential

dependence upon time F in addition to its X depen-

dency.

f ðX Þ ¼ 1ð þ CR sinpKX Þ; ð6Þ

f ðX ; F Þ ¼ ðeDF � 1Þ sinpKX : ð7Þ

Eq. (7) can be used to model either an initial startup or

a change in the steady-state power level. For example,

Eq. (7) may model f ðX ; F Þ when the initial state is F ¼ 0

and Eq. (7) is used until F reaches Fe, the value that gives
the ultimate desired steady-state power level.

2.3. Quasi-steady analysis

This approach, which is approximate, is usually the

easiest method for solving unsteady state convection

problems. Here, in the wall energy balance, Eq. (1),

the surface heat flux is represented with Newton’s

cooling law using the constant, steady state, fully de-

veloped value of the surface coefficient, h. This gives

the following differential equation for the wall

temperature, where the Nusselt number used is

Nu ¼ hR=kf .

B
o/W

oF
þ Nu /Wð � /BÞ ¼ f X ; Fð Þ: ð8Þ

The energy balance on the flowing fluid yields the

differential equation for the fluid bulk mean temper-

ature in this quasi-steady analysis and this is followed

by the initial and boundary conditions for Eqs. (8)

and (9):

o/B

oF
þ o/B

oX
¼ Nu /Wð � /BÞ; ð9Þ

F ¼ 0; X > 0; /B ¼ /W ¼ 0;

X ¼ 0; F > 0; /B ¼ 0:
ð10Þ

J. Sucec / International Journal of Heat and Mass Transfer 45 (2002) 1631–1642 1633



2.4. Quasi-steady solution

Eqs. (8)–(10) were solved first using the generation

given in Eq. (6). This was done by taking the Laplace

transform of these equations with respect to F and

eliminating �//w between Eqs. (8) and (9) where �//w is the

transform of /w X ; Fð Þ.
This gave an ordinary differential equation for

�//BðX ; pÞ which was solved. Then, since we are interested

in a first time domain solution, that is, relatively small

times F, therefore large values of the transform param-

eter p, some simplifications were possible and finally led

to the next equation.

�//B X ; pð Þ ¼
Nu 1� e� pþNuð ÞX� �
p2 Bp þ Nuþ BNuð Þ

þ NuCR sin pKX
p p þ Nuð Þ Bp þ Nuð Þ

�
pKNuCR cos pKX � e� pþNuð ÞX� �

p p þ Nuð Þ2 Bp þ Nuð Þ
: ð11Þ

Eq. (11) was inverted by use of the convolution the-

orem and a table of transforms, Roberts and Kauf-

mann [15]. It was then evident that B ¼ 1 is a singular

case and would have to be treated separately. Thus,

the following result is for the general case, B 6¼ 1:

/Bqs X ; Fð Þ ¼ Nu
BW 2

� �
e�WF
�

þ WF � 1
�

þ CR
Nu

� �
1

�
þ

e�NuF � Be�NuF =B
� �

B� 1

�

 sin pKX þ A2 cos pKX ; ð12Þ

W ¼ Nuþ Nu
B

: ð13Þ

The coefficient A2 depends upon B and F and is given in

Appendix A.

Eq. (12) is now inserted into Eq. (8) and that differ-

ential equation is solved for /WqsðX ; F Þ.

/Wqs X ; Fð Þ ¼ b6F½ � b0ð þ b2 þ b3Þ�e�NuF =B þ b0
þ b1F þ b2e�WF þ b3ð þ b4F Þe�NuF ; ð14Þ

b4 ¼
CRpK cos pKX

Nu 1� Bð Þ2
: ð15Þ

The other values b0; b1, etc. depend upon B and some

also depend on sinpKX . These values can be found in

Appendix A. Eqs. (13) and (14) are for B not equal to

1.0. Only the calculated results for B ¼ 1:00 will be

shown in the figures.

For the generation rate given by Eq. (7), the overall

procedure used parallels closely the one described above.

Hence, the final results for /Wqs and /Bqs are given di-

rectly below for B ¼ 1:0 for the generation q000=qg ¼
eDF � 1ð Þ sinpKX :

/Bqs X ; Fð Þ ¼ gs sinpKX þ gCAð þ gCBÞ cos pKX : ð16Þ

Define,

J ¼ Nuþ D: ð17Þ

With this, the functions of time, gs; gCA and gCB, can be

written next.

gs ¼
Nu
J 2

eDF
�

� 1ð þ JF Þe�NuF
�

� 1

Nu
1
�

� 1ð þ NuF Þe�NuF
�
; ð18Þ

gCA ¼
pKNu
J 3

1
��

þ JF þ :5J 2F 2
�
e�NuF � eDF

�
; ð19Þ

gCB ¼
pK
Nu2

1
�

� 1
�

þ NuF þ :5F 2Nu2
�
e�NuF

�
: ð20Þ

The quasi-steady solution for the wall temperature is

given below.

/Wqs X ; Fð Þ ¼ Cs Fð Þ sinpKX þ CC Fð Þ cospKX : ð21Þ

The time dependent coefficients in Eq. (21), CsðF Þ and

CCðF Þ, are given in Appendix A.

The constant flux Nu was used, Nu ¼ 2:055, in all the

quasi-steady calculations.

2.5. Analysis using approximate flux model

The development of the two integral flux model, for

the first time domain, is presented in [12]. There it was

found advantageous to use the following variable, s, in
place of the position variable X ; s ¼ F � X . Also used

in the flux model was the following fully developed

laminar velocity profile for the duct:

u Yð Þ ¼ um a0Y
�

þ a1Y 2
�
; a0 ¼ 3; a1 ¼ �1:5: ð22Þ

With these, [12] gives the nondimensional heat flux, Q,

shown next.

Q F ;sð Þ¼ 1ffiffiffi
p

p
Z F

0

Fð
(

�rÞ�1=2o/w

or
dr�

Z F

0

a1
ffiffiffiffiffiffiffiffiffiffiffi
F �r

p

2
ffiffiffi
p

p
"

þ a0
4
� F �rð Þ�1=2

2
ffiffiffi
p

p
#
o/w

os
dr

)
: ð23Þ

Transforming Eq. (1), the energy balance on the wall, to

the independent variables, F, s, and inserting Eq. (23),

yields the following integro-differential equation for

/W F ; sð Þ:
o/w

oF
þ o/w

os
þ 1

B
ffiffiffi
p

p
Z F

0

Fð � rÞ�1=2 o/w

or
dr

� 1

B
ffiffiffi
p

p
Z F

0

a1
ffiffiffiffiffiffiffiffiffiffiffiffi
F � r

p

2

"
þ a0

ffiffiffi
p

p

4
� F � rð Þ�1=2

2

#


 o/w

os
dr ¼ f F ; sð Þ

B
: ð24Þ
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In addition, the non-dimensional generation rates given

in Eqs. (6) and (7) must have X replaced by F � s.
The fluid bulk mean temperature, /B F ; sð Þ; when the

flux model, Eq. (23), is used is derived in [12] and shown

below.

/B F ; sð Þ ¼
Z F

0

a0 þ 4a1

ffiffiffiffiffiffiffiffiffiffiffiffi
F � r

p ffiffiffi
p

p
� �

/W r; sð Þdr

þ
Z F

0

� a0 F � rð Þ þ 8

3
a20 � 4a1

� �"


 F � rð Þ3=2ffiffiffi
p

p :þ 27

4
a0a1 Fð � rÞ2

þ 44a21 F � rð Þ5=2

3
ffiffiffi
p

p
#
o/W

os
dr: ð25Þ

Eq. (22) gives the values of a0 and a1 for the present

problem. Once Eq. (24) is solved for /W, it can then be

used in Eqs. (23) and (25) to give Q and /B.

In the present work, numerical procedures were used

to solve Eqs. (24) and (25) for the generation rates given

in Eqs. (6) and (7).

Using the superscript n to denote time, F ¼ nDF ,
and the index and subscript i to represent the X like

variable s ¼ �iDs where Ds > 0, the following

numerical representations were used for the partial

derivatives in Eq. (24):

o/W

oF
�

/nWi � /n�1
Wi

DF
;

o/W

os
�

/n�1
Wi

� /n�1
Wiþ1

Ds
: ð26Þ

The integrals appearing in Eq. (24) will be approxi-

mated by Riemann sums. The contribution to the first

integral between r ¼ ðk � 1ÞDF and r ¼ kDF is shown

next.

Z kDF

k�1ð ÞDF

F � rð Þ�1=2ffiffiffi
p

p o/W

or
dr �

/kWi � /k�1
Wi

� �
DF

Rk ; ð27Þ

Rk ¼
2ffiffiffi
p

p
ffiffiffiffiffi
Fa

ph
�

ffiffiffiffiffi
Fb

p i
; Fa ¼ F � kð � 1ÞDF ;

Fb ¼ F � kDF : ð28Þ

The same procedure was used for the second integral in

Eq. (24), and leads to Sk .

Sk ¼
a1
3
ffiffiffi
p

p F
3=2

a

n
� F 3=2

b

o
þ a0DF

4
� Rk

2
: ð29Þ

Next, inserting Eqs. (26), (28) and (29) into the energy

balance, Eq. (24), and solving for /nWi
gives the nu-

merical representation for the solution for wall tem-

perature.

/nWi ¼ /n�1
Wi � DF

Ds
/n�1
Wi

�
� /n�1

Wiþ1

�
M 1

�
� Sn
B

�

�M
Xn�1

k¼1

Rk
B

/kWi
�

� /k�1
Wi

�

þM
B

DF
Ds

Xn�1

k¼1

Sk /k�1
Wi

�
� /k�1

Wiþ1

�
þM
B

DFf F ; sð Þ;

M ¼ B=ðBþ RnÞ ð30Þ

The bulk mean fluid temperature, given in Eq. (25),

when using the approximate flux model, Eq. (23), can be

evaluated numerically once /WðF ; sÞ is known. The

numerical representation of Eq. (25) follows that of

Eq. (24).

Similarly, the evaluation of the surface heat flux, Q, is

given next.

Q ¼
Xn
k¼1

Rk
/kWi � /k�1

Wi

DF

 !
�
Xn
k¼1

Sk
/k�1
Wi � /k�1

Wiþ1

Ds

 !
:

ð31Þ

The needed values of the index i, which through s fixes

the space location, X, are determined from the relation

between F, X and s, namely, X ¼ F þ iDs.
A computer program was written to solve Eq. (30)

for /W which was then used to find /B and Q as func-

tions of space, X, and time, F, for the wall generation

rates given by Eqs. (6) and (7). A rough stability analysis

of Eq. (30) indicates conditional stability as long as

DF 6Ds, at least for BP 0:10. In fact, experience gained

in using the program indicates that when possible, DF
should be chosen to be equal to Ds. Lattice size studies

indicated that when f ðX ; F Þ is given by Eq. (7) with

D ¼ 4:0, K ¼ 1:0 and B ¼ 1:0, lattice sizes DF ¼ Ds ¼
0:0005 were needed for F P 0:05. Spacings of DF and Ds
of one half this value cause, at most, a 0.70% change in

/B, a 0.45% change in /W and a 0.30% change in Q.

3. Results and discussion

The first six figures are all for the generation rate

per unit volume, q000, given by q000=qg ¼ 1þ CR sinpKX .
All of the figures show the baseline finite difference

solution to illustrate the general trends of /W with

time, F, position X and thermal capacity ratio of the

wall material to the fluid, B. The figures also contain a

more limited representation of these trends for /B and

Q. Comparisons between the baseline finite difference

solution and both the quasi-steady results and the

results using the two integral approximate flux model

are made in some of the figures. Some figures show

results only in time domain I, where F 6 ð2=3ÞX , since
both quasi-steady and the approximate flux model are,

strictly speaking, limited to this first time domain.
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However, some base line finite difference results are

given also in time domain II since this solution is not

limited to just the first time domain. Some compari-

sons are made to results predicted by the quasi-steady

and approximate flux model for time F > ð2=3ÞX to

see how they perform.

Fig. 1 shows the finite difference solution for /W

versus time, F, at various values of B as the solid curves,

while the dashed curves are the corresponding quasi-

steady results. These are plotted at the position

X ¼ 0:50, using CR ¼ 1 and K ¼ 1 in the generation rate,

with time domain I results for F 6 0:333. It is seen that

the quasi-steady results can be greatly in error, as is

evident for B ¼ 0:1, 0.5 and 1.0, but, as B increases, they

are approaching the finite difference result, particularly

for B ¼ 10:0. At B ¼ 10:0, the quasi-steady predictions

of /W are only in error by about 1.5% while at B ¼ 2:0,
the error has already increased to 6.5%. The results

predicted by the approximate flux model are not shown

explicitly in this figure because they are so close to the

baseline finite difference results (maximum difference less

than 0.9%) that they cannot be distinguished from them

in the curve plots.

Fig. 2 is for the same set of conditions as Fig. 1, but

plots the fluid bulk mean temperature, /B, versus time F.

Once again the quasi-steady results, the dashed curves,

tend to approach the baseline finite difference predic-

tions as B increases. However, unlike /W, the error in

the quasi-steady value of /B is still significant at

B ¼ 10:0. It ranges from about 23% at F ¼ 0:05 to 10%

at F ¼ 0:35. The size of this difference is not apparent

from the curves at B ¼ 10:0 because of the small values

of /B at this condition. In fact, the error, percentage-

wise, is smaller at B ¼ 0:5 than it is at B ¼ 10:0. Another

general trend, which is not obvious from a direct look at

the figure, is that, for all values of B, the quasi-steady

results get closer to the finite difference results as time, F,

increases. In general, as is known, the slower the tran-

sient, the better the quasi-steady predictions since slow

transients are connected with low surface fluxes, Q. Low

surface heat flux is a hallmark of quasi-steady analysis

because of the use of the fully developed, steady state,

value of the surface coefficient, h, which is always lower

than the true unsteady value. Again, as is also true in

Fig. 1, the results of the two integral flux model are

virtually indistinguishable from the baseline results, a

maximum difference of about 1.1%, so they were not

plotted separately.

Fig. 3 gives the finite difference results for /W as a

function of position X and its evolution in time, F, for

B ¼ 0:1 and 1.0. These results are not limited to the first

time domain. In this figure, the results for time domain I

are shown as solid curves while the dashed portion of

Fig. 1. Prediction of wall temperature, /w, versus time, F, at

position X ¼ 0:50 showing influence of B. Sinusoidal in X wall

generation.

Fig. 2. Predicted fluid temperature, /B, at X ¼ :50, versus time,

F, showing influence of B. Wall generation sinusoidal in X.
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each curve shows /W in the second time domain,

F > ð2=3ÞX . The overall trend of /W with X is about

what is expected, considering that the generation rate is

sinusoidal with X.

The baseline solution, solid curves, the quasi-steady

solution, large dash-small dash and the approximate flux

model, the dashed curves, are compared in Fig. 4 at

X ¼ 0:5 for B ¼ 1:0. These comparisons are made be-

yond the end of the first time domain, F 6 0:333 for

X ¼ :5, to include a portion of the second domain,

F > 0:333. The quasi-steady and the flux model solu-

tions are first time domain solutions which are forced to

make calculations into the second domain as a test to see

how long they will give reasonable accuracy. In the first

time domain, F 6 0:333, the quasi-steady predictions

parallel the behavior seen earlier in Figs. 1 and 2,

namely, its /W is too high by about 12% and its /B is too

low by 16% at F ¼ :05 to about 2% at F ¼ 0:333. The
reason for this is evident by looking at the flux, Q, in

Fig. 4. It is low for the quasi-steady, due to the use of

too low a surface coefficient, leading to more of the wall

generation staying in the wall giving a higher than cor-

rect /W and less going to the fluid causing a lower /B

than that given by the baseline solution. On the other

hand, the approximate flux model, the dashed curve, is

practically coincident with the /W and /B finite differ-

ence curves up to F ¼ 0:333 with a maximum error of

0.45% for /W and 1% for /B at F ¼ 0:05 where /B is

very low. Inherent limitations in the approximate flux

model restrict its ability to calculate outside of the first

time domain to F ¼ 0:5 at X ¼ :5. However, in this re-

gion, 0:333 < F < 0:5, the model still does very well with

maximum error in /W and /B being 1.5% and 0.75%,

respectively, at F ¼ 0:50. It should also be pointed out

that the approximate model, theoretically restricted to

the thermal entrance length, is calculated beyond the

thermal entrance region which occurs at about F ¼ 0:15,
for X ¼ :50, as determined by the finite difference solu-

tion. Probably this is a factor in the error of the ap-

proximate model.

In Fig. 5, the limitations of the approximate flux

expression, Eq. (23), were explored further. Shown are

plots of /W, /B and Q versus time, F, at X ¼ 1:0 and

B ¼ 2:0, for the baseline solution and for the approxi-

mate flux model. At X ¼ 1:0, the end of the first time

Fig. 4. Prediction of Q, /w and /B by three different models at

X ¼ :50 and for B ¼ 1:00. Wall generation sinusoidal in X.

Fig. 3. Wall temperature, /w, variation with position, X, and

time F. Wall generation sinusoidal in X.
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domain is at F ¼ 0:666. The model solution, dashed

curves, predicts /W and /B fairly well up to F ¼ :666 in

spite of the fact that the Q prediction has a significant

error beyond F ¼ 0:4. The error in the model is 1.8%

and 1.4% for /W and /B at F ¼ :666. This error in-

creases to 4% for /W and 16% for /B at F ¼ 0:95. The
reasons for this are that the flux model is being used

beyond the end of the time domain for which it was

derived, that is, beyond F ¼ :666 at X ¼ 1:0 and is also

being used well beyond the end of the thermal entrance

region, which is at about F ¼ 0:15 for this case. Taking

Figs. 4 and 5 together, it is seen that the approximate

model predictions will degenerate as the location, X, at

which the calculations are made, increases.

/W for both the finite difference and the quasi-steady

solutions is plotted in Fig. 6 versus X at time F ¼ :20 for

a wide range of B to investigate the quasi-steady solu-

tion’s accuracy at various positions along the wall. The

finite difference results are represented by the solid

curves and the quasi-steady by the long dash-short da-

shed curves in the first time domain. Both solutions are

given by the dashed portion of each curve in the second

time domain, F > ð2=3ÞX for the finite difference and

F > X for the quasi-steady. Evident again is the in-

creasing error in quasi-steady predictions as B gets

smaller. The average error increases from about 1.5% at

B ¼ 10:0, where the quasi-steady solution is not plotted

since it falls virtually on top of the finite difference re-

sults for plotting purposes, to an error of about 30% at

B ¼ 0:3. The error in the quasi-steady results decreases

slowly with increasing X values, but does not vary very

much with X. At B ¼ 0:3 this error varies from 38% at

X ¼ 0:05 to 28% at X ¼ 1:0 while at B ¼ 10:0, it varies
from 1.8% at X ¼ 0:05 to 1.4% at X ¼ 1:0. Very

roughly, it was found that this error was approximately

doubled for every halving of the value of B. Once again

it is noted that the quasi-steady results for the wall

temperature are very close to the baseline results when B

becomes as large as 10.0. This has been noted previously

for a different kind of transient in [16]. The choice of the

range of B values used in the present work was deter-

mined by the work in [16–18]. As with some previous

figures, the results for the approximate flux model were

not plotted in Fig. 6 because they essentially lie on top of

the finite difference curves. The maximum difference

between them is about 0.5%. It will be recalled that the

dashed portions of the curves in Fig. 6 are the portions

in time domain II. At time F ¼ :20 for X < 0:20, cal-
culations are still being made in the first time domain for

the quasi-steady and approximate flux model. Appar-

ently, this is not far enough into the second time domain

yet, because these results, when compared to the baseline

finite difference solution, have about the same accuracy

as they had in the first time domain.

Fig. 5. Approximate flux model predictions compared to finite

difference results at X ¼ 1:0 and for B ¼ 2:00. Wall generation

sinusoidal in X.

Fig. 6. Quasi-steady wall temperature predictions compared to

finite difference results at time, F ¼ 0:20 for a range of values of

B. Wall generation sinusoidal in X.
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The last three figures are all for the generation rate

per unit volume given by Eq. (7), where q000 depends

upon both position X and time F, namely, q000=qg ¼
eDF � 1ð Þ sinpKX :
Fig. 7 displays the finite difference results (solid

curves) and the quasi-steady predictions (long dash-

short dash) for /W;/B and Q as a function of F at

X ¼ 0:50 and /W for X ¼ 0:20. The parameters D and K

are chosen equal to 4.0 and 1.0, respectively while

B ¼ 1:0. The rapid increase of these quantities with F,

due to the exponential growth factor, e4F , in the gener-

ation, is evident. The error in the quasi-steady /W av-

erages about 12–14%, while that for /B ranges from 19%

at F ¼ 0:05 down to 0.4% at F ¼ 0:50. The quasi-steady
solution underpredicts Q and /B and overpredicts /W

for the reasons mentioned earlier with the other gener-

ation rate. Results using the approximate flux model,

again, lie virtually on top of the finite difference pre-

dictions with a maximum deviation of about 0.6%.

The duct wall temperature variation with X, at var-

ious times, F, during the transient is shown in Fig. 8. The

quasi-steady results exhibit an error which increases as F

increases from 0.15 to 0.50. This is due to the fact that

the quasi-steady solution satisfies the initial condition,

that at F ¼ 0, /W ¼ 0, and therefore begins with no

error at all. The error is seen to progressively increase

from this as the time F gets farther away from F ¼ 0.

The average error, from F ¼ :05 to F ¼ :50, in the quasi-

steady prediction of /W is about 15% at X ¼ :10 grad-

ually decreasing to about 10% at X ¼ :90 while for /B

the average error is about 30% at X ¼ :10 and about 7%

at X ¼ :90. Some of this error may be due to the use of

the first time domain quasi-steady relations to perform

calculations in the second time domain. For instance, at

X ¼ :10, all values of F > :10 are in the second time

domain for the quasi-steady analysis. At X ¼ 1:00, the
wall temperature predictions for the quasi-steady are

greatly in error. It is felt that this is probably due to the

generation, q000, being zero at X ¼ 1:0, therefore, the wall
temperature rise is due solely to convection from the

fluid to the wall. Hence, the small value of the heat

transfer coefficient, h, causes the quasi-steady solution to

Fig. 7. Predictions of /w;/B and flux, Q, at X ¼ :50 for B ¼ 1:0

for wall generation exponential in time, F, and sinusoidal in X.

D ¼ 4:0.

Fig. 8. Evolution of wall temperature, /w, with time, F, and

position X for B ¼ 1:0 and D ¼ 4:0. Wall generation exponen-

tial in F and sinusoidal in X.
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underpredict the temperature there while at upstream

locations the positive generation causes convection to

the fluid and the small value of h gives an overprediction

of /W. Because of the very small values of /W very close

to X ¼ 1:0, this underprediction of /W cannot be de-

tected in Fig. 8.

In a conjugated heat transfer problem, since neither

the surface heat flux, Q, nor the wall temperature, /W, is

known, either the heat transfer coefficient, h, or, equiv-

alently, the Nusselt number, Nu ¼ hR=kf , is not of as

much interest and value as in a non-conjugated problem.

Actually, even in a non-conjugated problem, the surface

temperature variation with X may be such that the

Nusselt number and the heat transfer coefficient cease to

have much value and significance, as pointed out in [19].

However, engineers working in industry are used to

using the Nusselt number in convection heat transfer

calculations, so it seemed worthwhile to present some

transient Nusselt number predictions. This is shown in

Fig. 9, where the transient Nusselt number at X ¼ 0:5 is

graphed as a function of time for different values of the

thermal capacity ratio, B, and for a number of values of

the coefficient, D, in the exponent of the generation rate

given by Eq. (7).

There are a number of interesting features illustrated

by Fig. 9. Of notice first are the high values of the

Nusselt numbers predicted by the baseline finite differ-

ence solution (the six highest curves) when compared to

the value used to get the quasi-steady solution, 2.055,

shown as the horizontal line near the bottom of the

figure. This is a characteristic of a quasi-steady analysis,

as mentioned previously. All Nusselt number curves

begin at infinity at F ¼ 0 and rapidly decrease with time

before a period in which they slowly decrease with time,

F. This is caused by the zero thickness of the thermal

boundary layer at F ¼ 0 followed by its growth toward

y ¼ R at the end of the thermal entrance region. The

lowest three curves in Fig. 9 show the dependence of the

Nusselt number on the storage ratio, B, when D ¼ 1:0,
with Nu increasing as B increases from 0.1 to 10.0. The

maximum difference between Nu at B ¼ :1 and Nu at

B ¼ 10:0 is less than 7%, hence, the value of B does not

exert much influence on the Nusselt number for this

generation rate. On the other hand, Fig. 9 shows a

stronger dependence of the Nusselt number on the co-

efficient, D, in the exponential with time, F, generation,

q000 ¼ qg eDF � 1ð Þ sin pKX . At F ¼ 0:35, Nu when D ¼ 20

is 52% higher than its value at D ¼ 1. This is illustrated

by the four curves for B ¼ 1:00 for values of D equal to

1, 4, 10 and 20.

As mentioned earlier, all of the transient values of Nu

in Fig. 9 are higher than the value, Nu ¼ 2:055, used by

the quasi-steady analysis. However, as has been pointed

out in [7], a comparison of the Nusselt numbers is not

the proper way to measure the performance of a quasi-

steady analysis, rather the proper assessment of its ac-

curacy should be made by comparing the predicted wall

temperature, /W, and the fluid bulk mean temperature,

/B, with baseline results for these two temperatures, as

has been done in the previous figures.

The Nu predictions of the approximate, two integral

heat flux model, Eq. (23), as in previous figures, lie on

top (as far as plotting ability is concerned) of the finite

difference results in Fig. 9 for B ¼ 1:0 and D ¼ 4:0. The
maximum difference between them is around 0.1%. Ini-

tially, it was hoped that the approximate flux model

would not only allow an analytical solution to simple

enough transient conjugate problems as it did in the

earlier work [14], but that it would also be a better

choice than finite difference solutions of the partial dif-

ferential equation in problems that were done numeri-

cally as with Eq. (30). However, in the present work, it

was found that solving the flux model equations nu-

merically, Eqs. (23)–(25), often took more computer

time than that needed to solve the finite difference

equations, Eq. (5) of the present paper along with Eqs.

(8) and (9) of reference [7]. In retrospect, it is felt that

this is due to the inherent nature of the ‘‘historic’’ inte-

grals of Eq. (23), the flux model. As can be seen by

looking at the numerical representation of this equation,

Fig. 9. Predicted transient Nusselt number, Nu, with time, F, at

X ¼ 0:50 showing trends with B and D variation, wall genera-

tion exponential in time, F, and sinusoidal in X.
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namely, Eq. (31), a calculation made at time, i ¼ nDi
requires the use of /kw;Rk and Sk at every value k less

than n, that is k ¼ 1; 2; 3; . . . ; n� 1. Thus, the computer

must store and then recall the entire previous time

‘‘history’’ of these quantities to make the calculations at

the present time, nDt. The finite difference solution, on

the other hand, only requires storage of /W at the pre-

vious time, ðn� 1ÞDt, to calculate /W at the present

time, nDt. In an attempt to reduce the computer com-

putation time for the flux model in numerical form,

Eq. (31), it was thought that perhaps the summation

index k could be started at values greater than 1, like

k ¼ ks where ks is reasonably close to n� 1 in the sum-

mations required in Eqs. (30) and (31). The basis for

trying this was the thought that maybe the most recent

previous history in time was the most important as far as

contributions to the summation’s values are concerned.

But numerical experiments trying this indicated a sig-

nificant loss of accuracy in the results for any worth-

while decrease in computer run time.

So, even though the two integral flux model for the

first time domain, Eq. (23), is very accurate, giving re-

sults that are virtually identical with the baseline finite

difference solution, a numerical solution employing it,

such as Eq. (30), cannot, in general, be recommended

over a direct finite difference solution of the partial dif-

ferential equation. However, it is recommended for

problems in which an analytical solution is feasible and

it has been successfully used to arrive at an analytical

solution as was demonstrated in [14].

4. Conclusion

Three different approaches are presented for the so-

lution of the class of transient, conjugated duct flow

problems when there is time and space dependent gen-

eration within the duct wall material. These methods are

first, an implicit finite difference solution of the governing

partial differential equations giving the baseline solution,

second, a quasi-steady solution and, last, a solution

which uses a two integral, approximate expression for the

surface heat flux. The last two methods above are, in

theory, limited to the first time domain while the finite

difference solution has no such limitation.

Baseline predictions have been made for wall tem-

perature, fluid bulk mean temperature and wall heat flux

as functions of both position and time. Results from the

other two methods are compared to these finite differ-

ence results.

Once again, as has also been the case for earlier work

in the literature involving different types of transients, it

is concluded that if BP 10, the quasi-steady wall tem-

perature predictions may be judged to be of adequate

accuracy. However, this might not be true for the fluid

bulk mean temperature prediction.

The two integral expression for the surface heat flux,

though it is an approximate model, has been shown to

be highly accurate with results practically identical to

those of the baseline finite difference solution in the first

time domain. Therefore, it is highly recommended for

use when there exists the possibility of an analytical

solution to an unsteady conjugate problem. However, in

general, it cannot be recommended for use when nu-

merical methods are required for its evaluation, except

at very small times. This is not a question of its accuracy,

but rather, it is due to longer computer run times than

the direct finite difference baseline solution.

Calculations indicate the possibility of using the flux

model beyond the end of the first time domain for a

short time into the second time domain and retaining

high accuracy. This is especially true at lower values of

position, X. The quasi-steady solution can also be used

for a time beyond the first time domain with accuracy

comparable to what it had in the first time domain.

The predicted transient Nusselt number was found to

be only weakly dependent upon the thermal capacity

ratio, B, but strongly dependent upon the rapidity of the

transient as measured by the coefficient of time in the

exponential, with time, generation rate.

Appendix A
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gCA is given by Eq. (19) in the main body of the text.
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gCA and gCB are given by Eqs. (19) and (20) in the main

body of the paper.
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